欢迎来到计算机考试题库网
计算机题库官网
登录
注册
首页
计算机java工程师信产部认证考试
计算机网络设备调试员
计算机计算机软件水平考试
计算机通信工程师
计算机计算机辅助设计绘图员
全部科目
>
大学试题
>
理学
>
数学
>
近世代数基础
搜题找答案
问答题
简答题
证明:对有单位元的环来说,其加法满足交换律可以由环定义中其他条件推出.
【参考答案】
点击查看答案
上一题
目录
下一题
相关考题
问答题
证明:加群G的全体自同态映射对以下运算 (σ-τ)a=σa+τa, (στ)a=σ(τa)(∀a∈G) 作成一个有单位元的环(称为加群G的自同态环).
问答题
如果环R中元素a满足a2=a,则称为R的幂等元.如果环R中个元素都是幂等元,则称R为布尔(G.Boole,1815-1864)环.
问答题
设R为所有有理数对(x1,x2)作成的集合,加法与乘法分别为 (a1,a2)+(a1,a2)=(a1+b1,a2+b2), (a1,a2)(a1,a2)=(a1b1,a2b2). 问:R是否作成环?是否可换和有单位元?哪些元紊有逆元?
关注
顶部
微信扫一扫,加关注免费搜题